Polarization change due to fast winds from accretion disks
نویسنده
چکیده
A fraction of the radiation produced by an accretion disk may be Thomson scattered by a wind flowing away from the disk. Employing a simple plane-parallel model of the wind, we calculate the polarization of the scattered radiation and find that its sign depends on the wind velocity, β = v/c. In the case, 0.12 < β < 0.78, the polarization is parallel to the disk normal, i.e., it is orthogonal to the standard Chandrasekhar’s polarization expected from accretion disks. The velocity of an e wind is likely to saturate near the equilibrium value β∗ ∼ 0.5 for which the accelerating radiation pressure is balanced by the Compton drag. Then the change of polarization by the wind is most pronounced. This may help to reconcile the standard accretion disk model with the optical polarimetric observations of non-blazar AGNs. Subject headings: accretion, accretion disks – polarization – radiative transfer – scattering
منابع مشابه
Numerical simulations of mass outflows driven from accretion disks by radiation and magnetic forces
We study the two-dimensional, time-dependent magnetohydrodynamics (MHD) of radiation-driven winds from luminous accretion disks initially threaded by a purely axial magnetic field. The radiation force is mediated primarily by spectral lines and is calculated using a generalized multidimensional formulation of the Sobolev approximation. We use ideal MHD to compute numerically the evolution of Ke...
متن کاملSpectral Softening due to Winds in Accretion Disks
Accretion flows may produce profuse winds when they have positive specific energy. Winds deplete matter from the inner region of the disk and makes the inner region thinner, optically. Since there are fewer electrons in this region, it becomes easier to Comptonize this part by the soft photons which are intercepted from the Keplerian disk farther out. We present a self-consistent picture of win...
متن کاملDisk Winds Driven by Magnetorotational Instability and Dispersal of Proto-planetary Disks
By performing local three-dimensional MHD simulations of stratified accretion disks, we investigate disk winds driven by MHD turbulence. Initially given weak vertical magnetic fields are effectively amplified by magnetorotational instability and winding due to differential rotation. Large scale channel flows develop most effectively at 1.5 2 times the scale heights where the magnetic pressure i...
متن کاملThe Role of Thermal Conduction in Accretion Disks with Outflows
In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...
متن کاملDispersal of Protoplanetary Disks by Central Wind Stripping
We present a model for the dispersal of protoplanetary disks by winds from either the central star or the inner disk. These winds obliquely strike the flaring disk surface and strip away disk material by entraining it in an outward radial-moving flow at the wind-disk interface which lies several disk scale heights above the mid-plane. The disk dispersal time depends on the entrainment velocity,...
متن کامل