Polarization change due to fast winds from accretion disks

نویسنده

  • Andrei M. Beloborodov
چکیده

A fraction of the radiation produced by an accretion disk may be Thomson scattered by a wind flowing away from the disk. Employing a simple plane-parallel model of the wind, we calculate the polarization of the scattered radiation and find that its sign depends on the wind velocity, β = v/c. In the case, 0.12 < β < 0.78, the polarization is parallel to the disk normal, i.e., it is orthogonal to the standard Chandrasekhar’s polarization expected from accretion disks. The velocity of an e wind is likely to saturate near the equilibrium value β∗ ∼ 0.5 for which the accelerating radiation pressure is balanced by the Compton drag. Then the change of polarization by the wind is most pronounced. This may help to reconcile the standard accretion disk model with the optical polarimetric observations of non-blazar AGNs. Subject headings: accretion, accretion disks – polarization – radiative transfer – scattering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulations of mass outflows driven from accretion disks by radiation and magnetic forces

We study the two-dimensional, time-dependent magnetohydrodynamics (MHD) of radiation-driven winds from luminous accretion disks initially threaded by a purely axial magnetic field. The radiation force is mediated primarily by spectral lines and is calculated using a generalized multidimensional formulation of the Sobolev approximation. We use ideal MHD to compute numerically the evolution of Ke...

متن کامل

Spectral Softening due to Winds in Accretion Disks

Accretion flows may produce profuse winds when they have positive specific energy. Winds deplete matter from the inner region of the disk and makes the inner region thinner, optically. Since there are fewer electrons in this region, it becomes easier to Comptonize this part by the soft photons which are intercepted from the Keplerian disk farther out. We present a self-consistent picture of win...

متن کامل

Disk Winds Driven by Magnetorotational Instability and Dispersal of Proto-planetary Disks

By performing local three-dimensional MHD simulations of stratified accretion disks, we investigate disk winds driven by MHD turbulence. Initially given weak vertical magnetic fields are effectively amplified by magnetorotational instability and winding due to differential rotation. Large scale channel flows develop most effectively at 1.5 2 times the scale heights where the magnetic pressure i...

متن کامل

The Role of Thermal Conduction in Accretion Disks with Outflows

In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...

متن کامل

Dispersal of Protoplanetary Disks by Central Wind Stripping

We present a model for the dispersal of protoplanetary disks by winds from either the central star or the inner disk. These winds obliquely strike the flaring disk surface and strip away disk material by entraining it in an outward radial-moving flow at the wind-disk interface which lies several disk scale heights above the mid-plane. The disk dispersal time depends on the entrainment velocity,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998